Premium IOL Implantation Calculations in Post-LASIK Cataract Eyes Using ASCRS IOL Calculator

Sahiba K Chailertborisuth, Saneha K. C. Borisuth, Navaneet S.C. Borisuth, MD, PhD

Virdi Eye Clinic & Laser Vision Center, Rock Island, IL

ASCRS 2014, Poster 7037

Financial Disclosures

Sahiba K. Chailertborisuth and Saneha K. Borisuth have no financial interest in the subject matter of this e-poster.

Navaneet S. C. Borisuth is a consultant for Allergan Inc., Advanced Medical Optics, and Alcon Laboratories, Inc.

Introduction

- In the post-refractive surgery cataract eye, the selection of an intraocular lens with appropriate power for implantation can be inaccurate.
- Premium IOL implantation in the post-refractive surgery cataract eye represents a unique subset of patients.
- The visual outcome as well as spectacle independence of these patients is highly dependent on the refractive outcome.
- The purpose of this study is to evaluate the clinical outcomes of post-LASIK cataract eyes undergoing phacoemulsification with premium IOLs and to assess the accuracy of the ASCRS IOL Calculator for these eyes.

Methods

 Retrospective chart review of 25 eyes of 21 post-LASIK (myopic LASIK n=15, hyperopic LASIK n=10) patients undergoing diffractive mIOL (n=15) or toric lens (n=10) implantation after routine phacoemulsification.

 Diffractive multifocal lenses consisted of ZMB00 (n=11) (AMO, Inc.) or SN6AD1/D3 (n=4) (Alcon Labs) models. Toric lenses consisted of SN6AT3/T4 lens (n=10) (Alcon Labs).

 Postoperative refractive data was used to compare backcalculated optimum IOL powers (BCI) to those predicted by using the ASCRS IOL calculator.

Methods

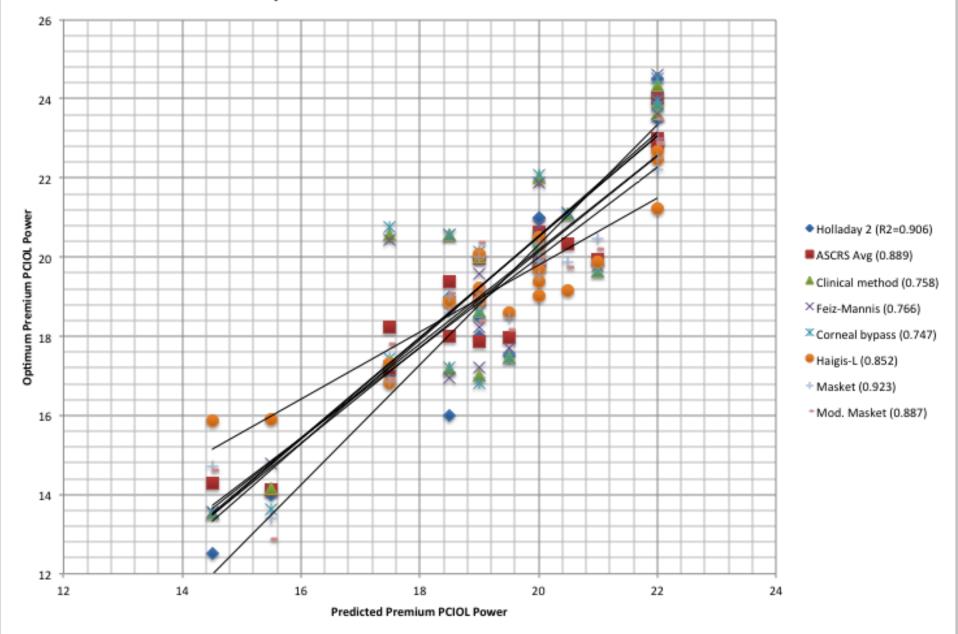
 We analyzed the MRSE, UDVA, UNVA, and the rate of excimer laser enhancement to obtain the target postoperative refraction.

- The absolute prediction error (PE) of each formula was calculated by the following:
- **PE = [Predicted Lens Power Optimal Lens Power to achieve desired refraction]**

Baseline Characteristics of Patients:

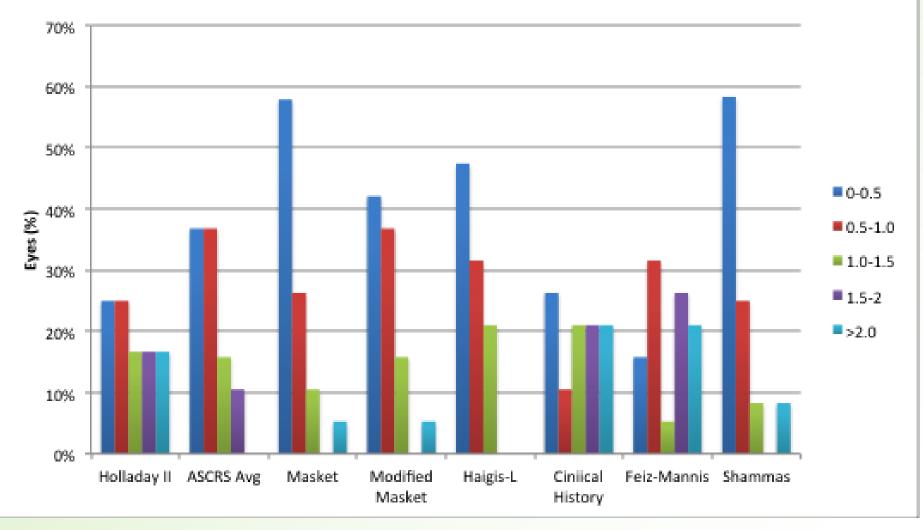
	No. of Eyes	Mean (SD)
Age	25	62.6 (7.42)
Sex Females Males	14 7	
Eye OD OS	25 13 12	
Axial Length (mm)	25	24.4 (1.23)
ACD (mm)	25	3.27 (0.36)
Average K's (D)	25	44.5 (3.5)
Lens Implanted ZMB00 SN6AD1/D3 SN6AT3/T4	25 11 4 10	
Lens Power (D) Multifocal IOL Toric IOL	15 10	18.9 (3.6) 18.8 (3.30) 20.1 (1.20)

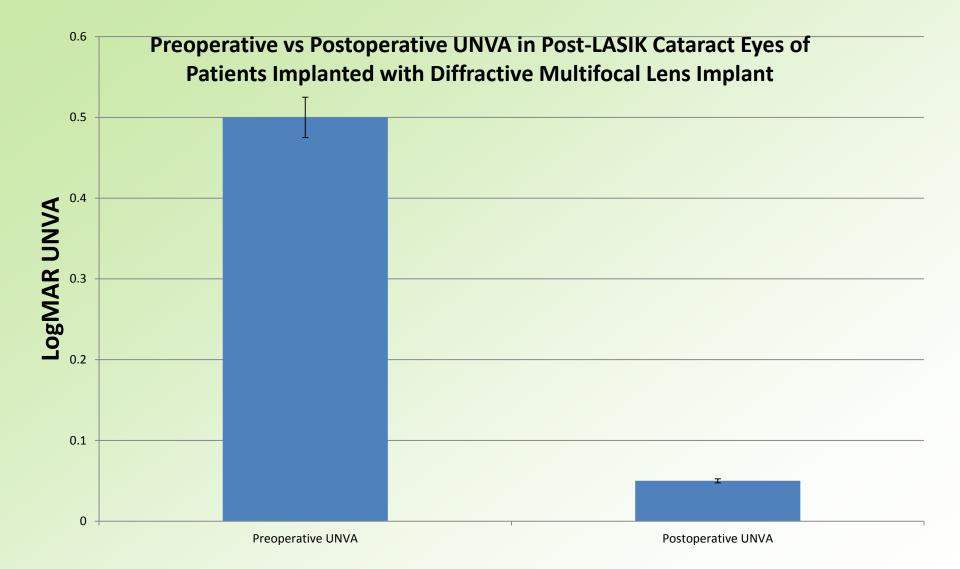
Results


• UNVA in the multifocal PCIOL group significantly improved from 0.50 ± 0.10 to 0.05 ± 0.08 logMAR units (p < 0.001).

• Astigmatism in the toric PCIOL group significantly improved from 1.18 ± 0.23 D to 0.64 ± 0.40 D (p = 0.027).

• 59% of eyes were within \pm 0.5 D of target outcomes, 72.6% within \pm 1.0 D, 86.2% within \pm 1.5D, 95.3% within \pm 2.0 D and 100% were within \pm 2.5 D.


 Back-calculated optimum IOL powers correlated highest with ASCRS Average IOL power, modified Masket, Masket, and Haigis-L power calculations


• Excimer laser enhancement was performed in 12 eyes (43% of eyes) because of residual refractive error.

Optimum vs Predicted Premium PCIOL Power

Distribution of Absolute Prediction Error Stratified By Power Calculation Formulas

Conclusions

- Inaccuracies in formulas for premium IOL power calculations are further inflated in the post-LASIK eye.
- Intraoperative aberrometry IOL power calculations have been shown to achieve excellent refractive outcomes in post-LASIK cataract eyes; however, its use is limited by its cost and availability.
- Our study demonstrates that the ASCRS IOL calculator, specifically the Average IOL Power, Masket, Modified Masket, Shammas, and the Haigis-L formulae are highly predictable and are a low cost alternative to intraoperative aberrometry.

Conclusions

- Our study demonstrates that implantation of multifocal posterior chamber IOLs in the post-LASIK eye can result in significantly improved reading vision even when placed monocularly.
- Implantation of toric posterior chamber IOLs resulted in a significant reduction of preoperative astigmatism.
- Inaccuracies in IOL calculations in the post-LASIK cataract eye resulted in a high rate of excimer laser enhancement postoperatively.