Evaluation of the Pharmacokinetic Profile of a Novel Ophthalmic Formulation of Loteprednol Etabonate

Kim Brazzell, Ph.D., Lisa Schopf, Ph.D., Elizabeth Enlow, Ph.D., Alexey Popov, Ph.D., James Bourassa, Ph.D., and Hongming Chen, Sc.D.

This research was entirely supported by and all authors are employees of Kala Pharmaceuticals, Inc.,
Loteprednol Etabonate Mucus Penetrating Particles (LE-MPP)

- Nano-suspension of loteprednol etabonate (LE) with particle size of 200-500 nm
- Formulated with Kala proprietary coating to allow penetration through mucus of tear film
- Can provide increased penetration and duration in ocular tissues
How do MPPs work?

Conventional Particles (CP)

1. Muco-adhesive particles are **rapidly cleared** from mucus through mucus turnover
2. Particle aggregation and mucus adherence leads to **poor distribution**

Mucus Penetrating Particles (MPP)

1. Muco-inert particles penetrate through tear film mucus layer
2. Mobility leads to **uniform distribution** across the mucosal epithelia
Previously Demonstrated Significant Corneal Delivery and Duration

Kala MPPs

1 dose
2hr
4hr

Control Nanoparticles

MPPs – inert nanoparticles with Kala’s proprietary coating
Control nanoparticles - same size and composition as the MPPs but without the proprietary coating

Schopf, L et. al., Poster Presentation ARVO 2013
Study Design

<table>
<thead>
<tr>
<th>Number of NZW Rabbits</th>
<th>Test Article</th>
<th>Dosing</th>
<th>Terminal Time Points (Post-dose)</th>
<th>Tissues and Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 per time point (n=6 eyes)</td>
<td>Lotemax® Gel (0.5% LE)</td>
<td>35 µL -QD</td>
<td>0.083, 0.25, 0.5, 1, 3, 6, 9, and 12hr</td>
<td>Cornea</td>
</tr>
<tr>
<td></td>
<td>LE Test Formulation (0.4% LE-MPP)</td>
<td></td>
<td></td>
<td>Aqueous humor</td>
</tr>
</tbody>
</table>

- The test formulations were well tolerated. No abnormal observations were noted in any rabbits following administration of the test formulations.

- Animals were euthanized by intravenous barbiturate overdose post-dose

- Both eyes were harvested with the collection of aqueous humor and dissection of cornea

\[T_{\text{max}}, C_{\text{max}}, t_{1/2}, \text{AUC}_{0-\text{last}}, \text{and AUC}_{0-\text{inf}} \] were determined using Pharsight’s Phoenix WinNonlin software (v.6.2.1) for all collected matrices. The log-linear trapezoidal rule was used for calculating AUC. \(T_{1/2} \) was calculated using the “best-fit” or a minimum of the three last data points. If the calculated \(r^2 \) for the regression was <0.6, the value was not reported. Prior to the calculation, any mean data points with a %CV >100 were checked for outliers at the p<0.01 level using the Grubbs’ Test. If indicated as an outlier, the value was excluded prior to calculating any pharmacokinetic parameter.
Comparison of Lotemax gel, 0.5% and LE-MPP, 0.4%

LE-MPP 1.6-fold greater AUC$_{0-3}$ Compared to Lotemax Gel in Aqueous Humor

In this study, at a 20% lower dose strength, LE-MPP provided equal or better drug levels than Lotemax® gel formulation.
Comparison of Lotemax gel, 0.5% and LE-MPP, 0.4%

<table>
<thead>
<tr>
<th>Loteprednol Pharmacokinetic Parameters</th>
<th>Aqueous Humor (Lotemax® gel, 0.5%)</th>
<th>Aqueous Humor (LE-MPP, 0.4%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{max}}) (hours)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>(C_{\text{max}}) (ng/g or ng/mL)</td>
<td>12.7</td>
<td>30.3</td>
</tr>
<tr>
<td>(t_{1/2}) elimination (hours)</td>
<td>2.9</td>
<td>2.6</td>
</tr>
<tr>
<td>(\text{AUC}_{0-\text{last}}) (ngh/g or ngh/mL)</td>
<td>28.7</td>
<td>42.6</td>
</tr>
</tbody>
</table>
Study Design

<table>
<thead>
<tr>
<th>Number of NZW Rabbits</th>
<th>Test Article</th>
<th>Dosing</th>
<th>Terminal Time Points (Post-dose)</th>
<th>Tissues and Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 per time point (n=6 eyes)</td>
<td>LE-MPP</td>
<td>50 µL-QID</td>
<td>0.5, 1, 2, 4, and 8hr</td>
<td>Cornea</td>
</tr>
<tr>
<td></td>
<td>LE-MPP</td>
<td>50 µL-BID</td>
<td></td>
<td>Aqueous humor</td>
</tr>
</tbody>
</table>

- The test formulations were well tolerated. No abnormal observations were noted in any rabbits following administration of the test formulations.

- Animals were euthanized by intravenous barbiturate overdose post-dose.

- Both eyes were harvested with the collection of aqueous humor and dissection of cornea.

\[T_{\text{max}}, C_{\text{max}}, t_{1/2}, \text{AUC}_{0-\text{last}}, \text{AUC}_{0-\text{inf}} \] were determined using Pharsight's Phoenix WinNonlin software (v.6.2.1) for all collected matrices. The log-linear trapezoidal rule was used for calculating AUC. \(T_{1/2} \) was calculated using the "best-fit" or a minimum of the three last data points. If the calculated \(r^2 \) for the regression was <0.6, the value was not reported. Prior to the calculation, any mean data points with a %CV >100 were checked for outliers at the p<0.01 level using the Grubbs' Test. If indicated as an outlier, the value was excluded prior to calculating any pharmacokinetic parameter.
LE-MPP: Twice-a-day (BID) compared to Four-times-a-day (QID)

<table>
<thead>
<tr>
<th>Loteprednol Pharmacokinetic Parameters</th>
<th>Cornea LE-MPP, 0.5% BID</th>
<th>Cornea LE-MPP, 0.5% QID</th>
<th>Aqueous Humor LE-MPP, 0.5% BID</th>
<th>Aqueous Humor LE-MPP, 0.5% QID</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{max} (hours)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>C_{max} (ng/g or ng/mL)</td>
<td>1392</td>
<td>1672</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>$\text{AUC}_{0-\text{last}}$ (ngh/g or ngh/mL)</td>
<td>2279</td>
<td>2713</td>
<td>35</td>
<td>45</td>
</tr>
</tbody>
</table>

- T_{max} and C_{max} values were similar regardless of dose frequency
- $\text{AUC}_{0-\text{last}}$ values were greater from the QID group than that of BID dosed group
Conclusions

• In this study, LE-MPP provides equal or better drug levels in both the cornea and aqueous humor compared to Lotemax® gel even at a 20% lower dose strength

• In a rabbit PK study comparing dose frequency of LE-MPP, 0.5%, four-times-a-day versus twice-a-day increased total drug exposure by only 15-20%

• This works supports the premise that mucus penetrating particle (MPP) technology can be used to enhance ocular exposure for topically applied therapeutics

• Further studies to assess the clinical efficacy and safety of LE-MPP are warranted
Breakthrough Solutions for Ocular Diseases