Descemet's stripping automated endothelial keratoplasty(DSAEK) with Anterior Chamber Intraocular Lenses –Complications and 3 year outcomes

Dr Lim Li, FRCS Head(Clinical and Education) and Senior Consultant Corneal and External Eye Disease Singapore National Eye Centre

Collaborators

Dr Marcus Ang

Registrar

Singapore National Eye Centre

Dr Hla M Htoon

Senior Research Scientist

Singapore National Eye Centre

A/Prof Jod Mehta
 Head(Research) and Senior
 Consultant

Corneal and External Eye Disease Singapore National Eye Centre Prof Donald Tan
 Medical Director
 Singapore National Eye Centre

FINANCIAL DISCLOSURES

None for Li Lim, Marcus Ang, Hla M Htoon

Donald Tan and Jodhbir S Mehta, inventors of the EndoGlide, have financial interests in the device (AngioTech, Reading, Pennsylvania, USA/Network Medical Products, North Yorkshire, UK).

Singapore National Eye Centre

Introduction

Performing DSAEK in an eye with an ACIOL can be challenging due to the shallower anterior chamber depth, difficulty in unfolding the graft or the escaping of air from the anterior chamber in the presence of the peripheral iridotomy. **Options for intraocular lens**

- Whether to perform a DSAEK and retain the ACIOL OR
- Perform an IOL exchange (either in conjunction or as a staged procedure). PURPOSE
- To describe outcomes and complications following Descemet's stripping automated endothelial keratoplasty (DSAEK) in eyes with pseudophakic bullous keratopathy (BK) while retaining the anterior chamber intraocular lenses (ACIOL).

Pseudophakic BK with ACIOL

Methods

- Data was obtained from the Singapore Corneal Transplant Study (SCTS),* which is an audited, prospective cohort study which tracks and records all clinical data and outcomes in patients undergoing corneal transplants
- All consecutive patients who underwent DSAEK for bullous keratopathy from 1st January 2008 to 1st April 2010 were included.

- Eyes with BK, which underwent DSAEK while retaining ACIOL (n=18),were compared to those with DSAEK alone with the posterior chamber intraocular lenses left in place (n=114).
- Main outcome measures were endothelial cell loss and graft survival
- All surgeries were performed by the 5 corneal surgeons at SNEC, which included cases performed or partially performed by corneal fellows in training under direct supervision

Singapore National

Surgical Technique

- Descemet's stripping automated endothelial keratoplasty surgeries were performed by <u>non-folding</u>techniques
 - Sheets glide technique,¹ or
 - The Endoglide (Angiotech, Reading Pennsylvania, USA/ Network Medical Products, North Yorkshire, UK) technique.²

Tan Endoglide

- 1. Mehta JS, Por YM, Beuerman RW, Tan DT. Glide insertion technique for donor cornea lenticule during Descemet's stripping automated Singer Mational keratoplasty. J Cataract Refract Surg 2007;33:1846-50.
- Gangwani V, Obi A, Hollick EJ. A prospective study comparing EndoGlide and Busin glide insertion techniques in descemet stripping endoty televity keratoplasty. Am J Ophthalmol 2012;153:38-43 e1.
 Singapore National Eye Centre

Characteristics of patients(DSAEK, ACIOL and PCIOL with BK)

	DSAEK				
	Total (<u>n</u> =132)	ACIOL (<u>n</u> =18)	PCIOL (<u>n</u> =114)	P value	
Mean age, years (±SD)	69.0(10.0)	69.7(12.1)	68.9(9.7)	0.965	
Gender (%)					
Male	67(50.8)	10(55.5)	57(50.0)	0.801	
Female	65(49.2)	8(44.5)	57(50.0)		
Race (%)					
Chinese	87(65.9)	13(72.2)	74(64.9)		
Malay	7(5.3)	1(5.6)	6(5.3)	0.892	
Indian	8(6.1)	0(0.0)	8(7.0)		
Others	30(22.7)	4(22.2)	26(22.8)		
Baseline/Pre-operative					
Visual Acuity (logMAR; mean, ±SD)	1.6(0.7)	1.8(0.7)	1.6(0.8)	0.147	
Pre-operative glaucoma (%)	41(31.1)	6(33.2)	35(30.7)	0.823	
Donor characteristics					
Donor ECD (mean, ±SD)	2827(219)	2822(277)	2827(210)	0.878	
Donor thickness (microns; mean, ±SD)	186(47)	181(41)	187(48)	0.778	
Donor diameter (mm; mean, ±SD)	8.6(0.4)	8.7(0.4)	8.6(0.4)	0.600	
	0.0(0.1)	0.1 (0.1)	0.0(0.1)	0.000	

DSAEK = <u>Descemet's</u> stripping automated endothelial keratoplasty; ACIOL = Anterior chamber intraocular lens; PCIOL = Posterior chamber intraocular lens; ECD=endothelial cell density; SD=standard deviation

ACIOL	PCIOL	P Value
(n = 18)	(n = 114)	
1910(615)	2132(609)	0.618
0(0.0)	3(2.6)	0.486
0.7(0.7)	0.6(1.1)	0.630
1236(762)	1906(587)	0.022
7(36.8)	12(10.3)	0.006
8(44.4)	20(17.5)	0.009
0(0)	2(1.8)	0.644
0(0)	1(0.9)	0.745
0(0)	2(1.8)	0.644
• •	· /	0.644
.,	· · ·	0.745
• •	· · /	NA
.,	. ,	NA
	. ,	NA
0(0)	0(0)	NA
	(n = 18) $1910(615)$ $0(0.0)$ $0.7(0.7)$ $1236(762)$ $7(36.8)$ $8(44.4)$ $0(0)$ $0($	$\begin{array}{c cccc} (n=18) & (n=114) \\ \hline 1910(615) & 2132(609) \\ 0(0.0) & 3(2.6) \\ \hline 0.7(0.7) & 0.6(1.1) \\ \hline 1236(762) & 1906(587) \\ 7(36.8) & 12(10.3) \\ \hline 8(44.4) & 20(17.5) \\ 0(0) & 2(1.8) \\ 0(0) & 1(0.9) \\ 0(0) & 2(1.8) \\ 0(0) & 2(1.8) \\ 0(0) & 2(1.8) \\ 0(0) & 2(1.8) \\ 0(0) & 1(0.9) \\ 0(0) & 0(0) \\ 0(0) & 0(0) \\ 0(0) & 0(0) \\ 0(0) & 0(0) \\ 0(0) & 0(0) \\ 0(0) & 0(0) \\ \end{array}$

DSAEK = Descemet's stripping automated endothelial keratoplasty; SD=standard deviation; ECD = Endothelial cell density; ACIOL = Anterior chamber intraocular lens; PCIOL = Posterior chamber intraocular lens; NA = Not applicable

^aNumber of patients with valid endothelial cell density (ACIOL, n=14; PCIOL, n=101).

^bGraft failure was defined as irreversible loss of optical clarity, sufficient to compromise vision for a minimum of three consecutive months

^cNumber of patients (ACIOL, n=8; PCIOL, n=39).

^dComplications as recorded in our prospective SCTS database at 1 year follow-up

Summary of Results

- Higher incidence of de novo glaucoma compared to DSAEK with PCIOL.
 - 4 X higher risk of developing glaucoma(44.4%), compared to DSAEK alone (17.5%) in eyes that did not have pre-existing glaucoma (OR 3.76 95% Confidence Interval 1.3-10.7, P=0.013).
 - 5 eyes (27.8%) required glaucoma filtering surgery (trabeculectomy with topical mitomycin-C) within 1 year, which was significantly higher than in DSAEK with PCIOL group (11 eyes, 9.6%; P = 0.029).

Endothelial cell counts

- The EC loss was significantly higher in DSAEK with ACIOL at 3 years compared to DSAEK (55.3%±29.2 versus 33.3%±20.8; P=0.01), with a significantly lower mean ECD (P=0.044).
- No significant difference in BCVA: Mean BCVA was 20/40 (logMAR, 0.27±0.11) in the DSAEK with ACIOL group (9 eyes) versus the DSAEK group (87 eyes) with a mean post-operative BCVA of 20/40 (logMAR 0.28±0.11, P=0.601)- co-morbidities excluded.

Poorer graft survival in the DSAEK-ACIOL group vs the DSAEK group

Vational Eye Centre

Limitations of Study

- Limited follow-up of 1 year and the small sample size
- However, it would be difficult to attain the large numbers of eyes required to study the outcomes of DSAEK while retaining the ACIOL such as percent EC loss;
 - our current sample size is comparable to previous similar published reports*
 - *Esquenazi S, Schechter BA, Esquenazi K. Endothelial survival after Descemet-stripping automated endothelial keratoplasty in eyes with retained anterior chamber intraocular lenses: two-year follow-up. J Cataract Refract Surg. 2011 Apr;37(4):714-9.

Conclusion

- DSAEK while retaining the ACIOL in selected cases has greater EC loss and graft failure at 3 years follow-up. Moreover, there is a higher risk of developing de novo glaucoma in these eyes.
- Direct comparative studies between DSAEK-ACIOL and DSAEK with IOL exchange are required to confirm the superiority of either procedure in such eyes with corneal decompensation

