## RAY-TRACING MEASUREMENT OF OPTICAL PROPERTIES CONTRIBUTING TO DYNAMIC ACCOMMODATIVE POWER AFTER LASER ANTERIOR CILIARY EXCISION

Karolinne Maia Rocha, MD, PhD Co-Authors: AnnMarie Hipsley, DPT, PhD

#### Financial Disclosure:

Author 1 & 2 have received research funding and travel expense reimbursement from Ace Vision Group, Inc. Authors 3,and 4 have no financial interest.

# SPHERICAL ABERRATION AND AGE

- Corneal spherical aberration (SA) is stable with age
- The aging crystalline lens becomes less negative (or even more positive)
- The total optical SA increases by adding to the positive corneal SA



### SPHERICAL ABERRATION AND DEPTH OF FOCUS

Depth of Focus (DOF): range of defocus error that degrades the retinal image quality.



## SPHERICAL ABERRATION AND DEPTH OF FOCUS

 Both positive and negative spherical aberration expands the DOF



 DoF curve strongly increased (up to 2D) as spherical aberration was increased to +/-0.6microns.

## RAY-TRACING EVALUATION OF PSEUDO VS TRUE ACCOMMODATION IN PATIENTS S/P LASER ANTERIOR CILIARY EXCISION

Purpose: Define changes in spherical aberration, Coma, Trefoil, and defocus during dynamic accommodation in patients following a procedure for presbyopic restoration.

- 6 presbyopia patients underwent bilateral laser anterior ciliary excision.
- iTrace measurements were performed at distance and 40 cm to assess accommodative ability.

#### LASER ANTERIOR CILIARY EXCISION

- Theory: scleral excisions in 3 physiologically critical zones partially restores biomechanics of the accommodative system.
- Procedural objective:
  - Restore mechanical efficiency of the natural accommodative mechanism.
  - Improve biomechanical mobility to achieve accommodative power
- Procedural Methods:
  - Nine excisions per quadrant
  - 600µm spot size in mathematical diamond matrix pattern using Er:Yag laser with fiber optic probe
  - Each matrix performed in four oblique quadrants





#### **OBJECTIVE MEASUREMENT OF TRUE ACCOMMODATION**



- The iTrace (Houston, TX) objectively measures refraction and HOAs.
- A refractive difference between distance and near refraction demonstrates true accommodation.

## **OBJECTIVE MEASUREMENT OF PSEUDOACCOMMODATION**



The iTrace compares HOAs at distance and near to determine the change in aberrations: total eye, coma, spherical aberration, trefoil, and secondary astigmatism.

## DYNAMIC WAVEFRONT ANALYSIS OF ACCOMMODATION

- Six patients S/P laser anterior ciliary excision were evaluated:
  - 3 short-term patients (0-6 months)
  - 3 long-term patients(6-8yrs)
- ITrace difference maps were created for each patient

| Difference<br>Distance to<br>Near BCVA | Mean<br>Rx | Total<br>Aberration | Total<br>HOA | Spherical Ab | Coma         | Trefoil       |
|----------------------------------------|------------|---------------------|--------------|--------------|--------------|---------------|
| N = 6                                  | 0.04       | 0.15                | 0.11         | -0.011       | 0.06         | 0.0005        |
| SD                                     | ± 0.03     | $\pm 0.08$          | $\pm 0.07$   | $\pm 0.021$  | $\pm \ 0.05$ | $\pm \ 0.007$ |

#### SPHERICAL ABERRATION AND DEPTH OF FOCUS



- Specific HOA have a greater impact on depth of focus, visual acuity and quality
- SA shifts toward negative values during accommodation

#### SPHERICAL ABERRATION AND DEPTH OF FOCUS WF Comparison Display HOYATrace Surgical Workstation LaserACE patient Refraction Map **Refraction Map Refraction Map** Total, no Defocus Total, no Defocus Total, no Defocus 8 years after procedure. 3.90 mm 3.90 mm 3.90 mm ----the state of the local data and the A DATE OF A DATE OF A DATE -0.25 -0.25 -0.25 -0.50 -0.50 -0.50 -0.75 Difference Near Distance D D D OD OD 05-10-2013 11:34:03 05-10-2013 11:29:00 Clinic Clinic Physician Physician Operator Operator Limbus / Pupil / Scan 10.61 / 4.65 / 3.90 mm Limbus / Pupil / Scan 10.43 / 5.23 / 4.30 mm **Fixation Target Position** + 0.75 D Fixation Target Position + 1.75 D Tracey Refraction +1.62 D -1.00 D x 118° +1.87 D -0.75 D x 133° +0.25 D -0.50 D x 95° Tracey Refraction Tracev Refraction +0.99 D -0.81 D x 112° @ D <= 2.00 mm +1.40 D -1.00 D x 116° @ D <= 3.00 mm VD = 12.00 mm +1.46 D -0.60 D x 138° @ D <= 2.00 mm VD = 12.00 mm +0.14 D -0.66 D x 88° @ D <= 2.00 mm VD = 12.00 mm +1.69 D -0.71 D x 133° @ D <= 3.00 mm +0.24 D -0.58 D x 94° @ D <= 3.00 mm VD = 12.00 mm VD = 12.00 mm VD = 12.00 mm +1.57 D -1.05 D x 118° @ D <= 3.90 mm +1.83 D -0.80 D x 134° @ D <= 4.30 mm VD = 12.00 mm +0.27 D -0.54 D x 95° @ D <= 3.90 mm VD = 12.00 mm VD = 12.00 mm Root Mean Square @ D <= 3.90 mm Root Mean Square @ D <= 4.30 mm Root Mean Square @ D <= 3.90 mm Total 0.746 u Total 1.074 u Total 0.227 µ LO Total 0.718 µ 1.050 µ 0.211 LO Total LO Total Defocus - 0.585 µ Defocus - 0.975 µ Defocus 0.000 u 0.417 ux 28° 0.389 µ x 44 Astigmatis Astigmatis Astigmatism 0.211 µ x HO Total HO Total HO Total 0.085 µ 0.202 µ 0.226 µ 0.183 µ x 247° 0.205 µ x 232° Coma Coma Coma 0.051 µ x 315° Spherical - 0.048 µ Spherical - 0.015 µ Spherical - 0.016 µ Secondary Astigmatism 0.017 µ x 58 Secondary Astigmatism 0.027 µ x 61° Secondary Astigmatism 0.009 µ x 90° Trefoil 0.019 µ x 87° Trefoil 0.037 µ x 87° 0.001 µ x 108 Trefoil

• Note the reduction in hyperopia while viewing the 40 cm target and change in spherical aberration.

distant w/our rx

near w/ our rx

# CONCLUSIONS

- Ray-tracing technology can objectively measure dynamic accommodation and is a critical device to differentiate true accommodation from pseudo-accommodation
- Specific optical correlations were identified during dynamic accommodation pre-op/post-op LaserACE which may explain the improvement in dynamic accommodative capacity and visual acuity in these patients